Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 5735, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459086

ABSTRACT

The spike protein (S) of SARS-CoV-2 induces neutralizing antibodies and is the key component of current COVID-19 vaccines. The most efficacious COVID-19 vaccines are genetically-encoded spikes with a double proline substitution in the hinge region to stabilize S in the prefusion conformation (S-2P). A subunit vaccine can be a valuable addition to mRNA and viral vector-based vaccines but requires high stability of spike. In addition, further stabilization of the prefusion conformation of spike might improve immunogenicity. To test this, five spike proteins were designed and characterized, ranging from low to high stability. The immunogenicity of these proteins was assessed in mice, demonstrating that a spike (S-closed-2) with a high melting temperature, which still allowed ACE2 binding, induced the highest neutralization titers against homologous and heterologous strains (up to 16-fold higher than the least stabilized spike). In contrast, the most stable spike variant (S-locked), in which the receptor binding domains (RBDs) were locked in a closed conformation and thus not able to breathe, induced relatively low neutralizing antibody titers against heterologous strains. These data demonstrate that S protein stabilization with RBDs exposing highly conserved epitopes may be needed to increase the immunogenicity of spike proteins for future COVID-19 vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Humans , Animals , SARS-CoV-2 , COVID-19 Vaccines , Antibodies, Viral , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , Antibodies, Neutralizing
2.
NPJ Vaccines ; 8(1): 176, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952003

ABSTRACT

Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models. The recombinant H1 stem antigen (50 µg) was administered to influenza-naïve non-human primates either with aluminum hydroxide [Al(OH)3] + NaCl, AS01B, or SLA-LSQ formulations at week 0, 8 and 34. These SLA-LSQ formulations comprised of varying ratios of the synthetic TLR4 agonist 'second generation synthetic lipid adjuvant' (SLA) with liposomal QS-21 (LSQ). A vaccine formulation with aluminum hydroxide or SLA-LSQ (starting at a 10:25 µg ratio) induced HA-specific antibodies and breadth of neutralization against a panel of influenza A group 1 pseudoviruses, comparable with vaccine formulated with AS01B, four weeks after the second immunization. A formulation with SLA-LSQ in a 5:2 µg ratio contained larger fused or aggregated liposomes and induced significantly lower humoral responses. Broadly HA stem-binding antibodies were detectable for the entire period after the second vaccine dose up to week 34, after which they were boosted by a third vaccine dose. These findings inform about potential adjuvant formulations in clinical trials with an H1 stem-based vaccine candidate.

3.
J Autoimmun ; 138: 103031, 2023 07.
Article in English | MEDLINE | ID: mdl-37229811

ABSTRACT

The aim of this study was to assess the L-type amino acid transporter-1 (LAT1) as a possible therapeutic target for rheumatoid arthritis (RA). Synovial LAT1 expression in RA was monitored by immunohistochemistry and transcriptomic datasets. The contribution of LAT1 to gene expression and immune synapse formation was assessed by RNA-sequencing and total internal reflection fluorescent (TIRF) microscopy, respectively. Mouse models of RA were used to assess the impact of therapeutic targeting of LAT1. LAT1 was strongly expressed by CD4+ T cells in the synovial membrane of people with active RA and the level of expression correlated with levels of ESR and CRP as well as DAS-28 scores. Deletion of LAT1 in murine CD4+ T cells inhibited the development of experimental arthritis and prevented the differentiation of CD4+ T cells expressing IFN-γ and TNF-α, without affecting regulatory T cells. LAT1 deficient CD4+ T cells demonstrated reduced transcription of genes associated with TCR/CD28 signalling, including Akt1, Akt2, Nfatc2, Nfkb1 and Nfkb2. Functional studies using TIRF microscopy revealed a significant impairment of immune synapse formation with reduced recruitment of CD3ζ and phospho-tyrosine signalling molecules in LAT1 deficient CD4+ T cells from the inflamed joints but not the draining lymph nodes of arthritic mice. Finally, it was shown that a small molecule LAT1 inhibitor, currently undergoing clinical trials in man, was highly effective in treating experimental arthritis in mice. It was concluded that LAT1 plays a critical role in activation of pathogenic T cell subsets under inflammatory conditions and represents a promising new therapeutic target for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Synovial Membrane , T-Lymphocyte Subsets , T-Lymphocytes, Regulatory/metabolism , Signal Transduction , Arthritis, Experimental/genetics , CD4-Positive T-Lymphocytes
4.
NPJ Vaccines ; 8(1): 40, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927774

ABSTRACT

Since the original outbreak of the SARS-CoV-2 virus, several rapidly spreading SARS-CoV-2 variants of concern (VOC) have emerged. Here, we show that a single dose of Ad26.COV2.S (based on the Wuhan-Hu-1 spike variant) protects against the Gamma and Delta variants in naive hamsters, supporting the observed maintained vaccine efficacy in humans against these VOC. Adapted spike-based booster vaccines targeting Omicron variants have now been authorized in the absence of human efficacy data. We evaluated the immunogenicity and efficacy of Ad26.COV2.S.529 (encoding a stabilized Omicron BA.1 spike) in naive mice and in hamsters with pre-existing immunity to the Wuhan-Hu-1 spike. In naive mice, Ad26.COV2.S.529 elicited higher neutralizing antibody titers against SARS-CoV-2 Omicron BA.1 and BA.2, compared with Ad26.COV2.S. However, neutralizing titers against the SARS-CoV-2 B.1 (D614G) and Delta variants were lower after primary vaccination with Ad26.COV2.S.529 compared with Ad26.COV2.S. In contrast, we found comparable Omicron BA.1 and BA.2 neutralizing titers in hamsters with pre-existing Wuhan-Hu-1 spike immunity after vaccination with Ad26.COV2.S, Ad26.COV2.S.529 or a combination of the two vaccines. Moreover, all three vaccine modalities induced equivalent protection against Omicron BA.2 challenge in these animals. Overall, our data suggest that an Omicron BA.1-based booster in rodents does not improve immunogenicity and efficacy against Omicron BA.2 over an Ad26.COV2.S booster in a setting of pre-existing immunity to SARS-CoV-2.

5.
Eur Heart J ; 43(19): 1864-1877, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35567557

ABSTRACT

AIMS: Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability. METHODS AND RESULTS: Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts. CONCLUSION: Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.


Subject(s)
Atherosclerosis , Interferon Regulatory Factors , Macrophages , Plaque, Atherosclerotic , Animals , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Humans , Inflammation/metabolism , Interferon Regulatory Factors/metabolism , Macrophages/immunology , Mice , Necrosis , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
6.
J Immunol ; 202(5): 1531-1539, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30683705

ABSTRACT

Mast cells (MCs) are potent innate immune cells that aggravate atherosclerosis through the release of proinflammatory mediators inside atherosclerotic plaques. Similarly, CD4+ T cells are constituents of the adaptive immune response and accumulate within the plaques following lipid-specific activation by APCs. Recently it has been proposed that these two cell types can interact in a direct manner. However, no indication of such an interaction has been investigated in the context of atherosclerosis. In our study, we aimed to examine whether MCs can act as APCs in atherosclerosis, thereby modulating CD4+ T cell responses. We observed that MCs increased their MHC class II expression under hyperlipidemic conditions both in vivo and in vitro. Furthermore, we showed that MCs can present Ags in vivo via MHC class II molecules. Serum from high-fat diet-fed mice also enhanced the expression of the costimulatory molecule CD86 on cultured MCs, whereas OVA peptide-loaded MCs increased OT-II CD4+ T cell proliferation in vitro. The aortic CD4+ and TH1 cell content of atherosclerotic mice that lack MCs was reduced as compared with their wild-type counterparts. Importantly, we identified MCs that express HLA-DR in advanced human atheromata, indicating that these cells are capable of Ag presentation within human atherosclerotic plaques. Therefore, in this artice, we show that MCs may directly modulate adaptive immunity by acting as APCs in atherosclerosis.


Subject(s)
Atherosclerosis/immunology , CD4-Positive T-Lymphocytes/immunology , Hypercholesterolemia/immunology , Mast Cells/immunology , Animals , Cells, Cultured , Humans , Male , Mice , Mice, Knockout
7.
J Histochem Cytochem ; 67(1): 9-27, 2019 01.
Article in English | MEDLINE | ID: mdl-30205019

ABSTRACT

Heparan sulfate (HS) proteoglycans on immune cells have the ability to bind to and regulate the bioactivity more than 400 bioactive protein ligands, including many chemokines, cytokines, and growth factors. This makes them important regulators of the phenotype and behavior of immune cells. Here we review how HS biosynthesis in macrophages is regulated during polarization and in chronic inflammatory diseases such as rheumatoid arthritis, atherosclerosis, asthma, chronic obstructive pulmonary disease and obesity, by analyzing published micro-array data and mechanistic studies in this area. We describe that macrophage expression of many HS biosynthesis and core proteins is strongly regulated by macrophage polarization, and that these expression patterns are recapitulated in chronic inflammation. Such changes in HS biosynthetic enzyme expression are likely to have a significant impact on the phenotype of macrophages in chronic inflammatory diseases by altering their interactions with chemokines, cytokines, and growth factors.


Subject(s)
Biosynthetic Pathways , Heparan Sulfate Proteoglycans/metabolism , Inflammation/metabolism , Macrophages/metabolism , Animals , Carbohydrate Epimerases/metabolism , Chronic Disease , Glucuronidase/metabolism , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Macrophages/pathology , N-Acetylglucosaminyltransferases/metabolism , Sulfatases/metabolism , Sulfotransferases/metabolism
8.
Circulation ; 136(12): 1140-1154, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28698173

ABSTRACT

BACKGROUND: Myeloid cells are central to atherosclerotic lesion development and vulnerable plaque formation. Impaired ability of arterial phagocytes to uptake apoptotic cells (efferocytosis) promotes lesion growth and establishment of a necrotic core. The transcription factor interferon regulatory factor (IRF)-5 is an important modulator of myeloid function and programming. We sought to investigate whether IRF5 affects the formation and phenotype of atherosclerotic lesions. METHODS: We investigated the role of IRF5 in atherosclerosis in 2 complementary models. First, atherosclerotic lesion development in hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice and ApoE-/- mice with a genetic deletion of IRF5 (ApoE-/-Irf5-/-) was compared and then lesion development was assessed in a model of shear stress-modulated vulnerable plaque formation. RESULTS: Both lesion and necrotic core size were significantly reduced in ApoE-/-Irf5-/- mice compared with IRF5-competent ApoE-/- mice. Necrotic core size was also reduced in the model of shear stress-modulated vulnerable plaque formation. A significant loss of CD11c+ macrophages was evident in ApoE-/-Irf5-/- mice in the aorta, draining lymph nodes, and bone marrow cell cultures, indicating that IRF5 maintains CD11c+ macrophages in atherosclerosis. Moreover, we revealed that the CD11c gene is a direct target of IRF5 in macrophages. In the absence of IRF5, CD11c- macrophages displayed a significant increase in expression of the efferocytosis-regulating integrin-ß3 and its ligand milk fat globule-epidermal growth factor 8 protein and enhanced efferocytosis in vitro and in situ. CONCLUSIONS: IRF5 is detrimental in atherosclerosis by promoting the maintenance of proinflammatory CD11c+ macrophages within lesions and controlling the expansion of the necrotic core by impairing efferocytosis.


Subject(s)
Atherosclerosis/pathology , Interferon Regulatory Factors/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , CD11c Antigen/genetics , CD11c Antigen/metabolism , Cells, Cultured , Immunohistochemistry , Integrin beta3/metabolism , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Lymph Nodes/cytology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Phagocytosis , Shear Strength
9.
Sci Rep ; 6: 37585, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883026

ABSTRACT

Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6Clow monocytes and CD4+ CD25+ FoxP3+ T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development.


Subject(s)
Atherosclerosis/drug therapy , Receptors, Lysophosphatidic Acid/genetics , Animals , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol, LDL/blood , Disease Models, Animal , Endocytosis/genetics , Humans , Isoxazoles/administration & dosage , Lysophospholipids/genetics , Mice , Propionates/administration & dosage , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Signal Transduction/genetics
10.
Front Oncol ; 6: 233, 2016.
Article in English | MEDLINE | ID: mdl-27847783

ABSTRACT

In healthy individuals, immune-checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune-checkpoint blockade of cytotoxic T lymphocyte antigen-4 and programed death-1 emerged as promising strategies to activate antitumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune-checkpoint blockade in the context of the cancer-immunity cycle, aimed at increasing response rates to the single treatments. Specifically, we discuss combinations that promote antigen release and presentation, that further amplify T cell activation, that inhibit trafficking of regulatory T cells or MSDCs, that stimulate intratumoral T cell infiltration, that increase cancer recognition by T cells, and that stimulate tumor killing.

SELECTION OF CITATIONS
SEARCH DETAIL
...